Calculus A for Economics

Solutions to Exercise Number 9b

4) e) The function is defined and differentiable for all $x \in[1, e]$. We have $y^{\prime}=\frac{1}{x}$ and $f(1)=0$ and $f(e)=1$. Hence $x=1$ is a minimum point and $x=e$ is a maximum point.
5) Denote $h(x)=f(x)-g(x)$. Since $f(x)$ and $g(x)$ are differentiable in (a, b) then $h(x)$ is differentiable in (a, b) and since $f(x)$ and $g(x)$ are continuous in $[a, b]$ so is $h(x)$. Also, since $f(a)=g(a)$ then $h(a)=0$. We have $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)$, and since $f^{\prime}(x)>g^{\prime}(x)$ for all $x \in(a, b)$, it follows that $h^{\prime}(x)>0$ for all $x \in(a, b)$. Given a point $x \in(a, b)$ We apply the Mean Value Theorem to the function $h(x)$ on the interval $[a, x]$. (Verify that all the conditions of the Theorem are satisfied). Thus, there is a point $c \in(a, x)$ such that $h(x)-h(a)=h^{\prime}(c)(x-a)$. Clearly $x-a>0$ and from the above $h^{\prime}(c)>0$. Hence, for $x \in(a, b)$ we have $h(x)-h(a)>0$ or $h(x)>h(a)$. But since $h(a)=0$, we obtain for all $x \in(a, b)$ that $h(x)=f(x)-g(x)>0$ which is what we needed to prove.
6) a) Denote $f(x)=2 \sqrt{x}$ and $g(x)=3-\frac{1}{x}$. Then for $x>1$ these function are defined and differentiable. We have $f^{\prime}(x)=\frac{1}{\sqrt{x}}$ and $g^{\prime}(x)=\frac{1}{x^{2}}$. For all $x>1$ we have $x^{2}>\sqrt{x}$ and hence $f^{\prime}(x)>g^{\prime}(x)$ for all $x>1$. Also, $f(1)=g(1)$. Therefore we may apply problem 5) to deduce the desire inequality.
b) Consider first the case when $x>0$. Define $f(x)=e^{x}$ and $g(x)=1+x$. Then $f^{\prime}(x)=e^{x}$ and $g^{\prime}(x)=1$. We have $f(0)=g(0)=1$, and for all $x>0$ we have $e^{x}>1$ or $f^{\prime}(x)>g^{\prime}(x)$. Therefore we may apply problem 5) to deduce the desire inequality. When $x<0$ we set $y=-x$. Then we need to prove that $e^{-y}>1-y$ for all $y>0$. Setting $f(y)=e^{-y}$ and $g(y)=1-y$ and applying problem 5) the inequality follows. (Check the conditions!)
c) Let $f(x)=\ln x$ and $g(x)=\frac{2(x-1)}{x+1}$. Both functions are defined and differentiable for all $x>1$. We have $f(1)=g(1)=0$. Also, $f^{\prime}(x)=\frac{1}{x}$ and $g^{\prime}(x)=\frac{4}{(x+1)^{2}}$. To check that $f^{\prime}(x)>g^{\prime}(x)$ we need to prove that $\frac{1}{x}>\frac{4}{(x+1)^{2}}$ for all $x>1$. This is equivalent to $(x+1)^{2}>4 x$ which is equivalent to $(x-1)^{2}>0$ which is true for all $x>1$. Therefore we may apply problem 5) to deduce the desire inequality.
d) We argue by induction on n. For $n=0$ we get $1<e^{x}$ which is true for all $x>0$. Assume
the inequality holds for $n-1$. Thus we have

$$
\begin{equation*}
1+x+\frac{x^{2}}{2!}+\cdots \frac{x^{n-1}}{(n-1)!}<e^{x} \tag{1}
\end{equation*}
$$

Denote $f(x)=e^{x}$ and $g(x)=1+x+\frac{x^{2}}{2!}+\cdots \frac{x^{n}}{n!}$, and apply problem 5) to these functions. Clearly $f(0)=g(0)=1$. Also, $f^{\prime}(x)=e^{x}$, and $g^{\prime}(x)$ is the left hand side of equation (1). Hence, equation (1) is equivalent to $f^{\prime}(x)>g^{\prime}(x)$. Thus, we deduce that $f(x)>g(x)$ which is the inequality we needed to prove.
7) Denote the two numbers by a and b. Then, $a+b=40$ or $b=40-a$ and their product is $a b$, or $a(40-a)$. Define the function $f(a)=a(40-a)$. Then we need to find the maximum of $f(a)$ when $0 \leq a \leq 40$. The last condition follows from the fact that outside this interval the function $f(a)$ is negative and so the product cannot be maximal. We have $f^{\prime}(a)=40-2 a$ and $f^{\prime}(a)=0$ implies $a=20$ which is in our interval. We have $f(0)=f(40)=0$ and $f(20)=400$. Hence the maximum is obtained if we take the numbers $a=b=20$.
8) Denote by a the length of the base of the box, and by b its width. Also denote by h the height of the box. Hence, if we denote its volume by V then $V=a b h$, and if we denote by S the area of its faces then $S=2(a b+a h+b h)$. It is given that $S=200$ and that $a=3 b$. From these conditions we can write V as a function of b. Indeed, we have $V(b)=75 b-\frac{9}{4} b^{3}$. The equation $S=2(a b+a h+b h)$ becomes $h=\frac{200-6 b^{2}}{8 b}$. Since $h \geq 0$, we must have $\frac{200-6 b^{2}}{8 b} \geq 0$, or $b \leq \frac{10}{\sqrt{3}}$. Clearly, $b \geq 0$. Thus, we need to find the maximum of $V(b)=75 b-\frac{9}{4} b^{3}$ in the interval $0 \leq b \leq \frac{10}{\sqrt{3}}$. We have $V^{\prime}=75-\frac{27}{4} b^{2}$ and the only relevant point is $b=\frac{10}{3}$ which is in our interval. We have $f(0)=f\left(\frac{10}{\sqrt{3}}\right)=0$ and $f\left(\frac{10}{3}\right)=\frac{500}{3}$. Hence, $b=\frac{10}{3}$ is the maximal point. For this value we have $a=3 b=10$, and $h=5$.
9) Producing n products a week costs $600+10 n+n^{2}$ Shekel. The amount the factory gets from selling these products is $(110-2 n) n$ Shekel. If we denote the profit by P, and view it as function of n, then we have $P(n)=(110-2 n) n-\left(600+10 n+n^{2}\right)=-3 n^{2}+100 n-600$. Clearly $0 \leq n \leq 25$. We have $P^{\prime}(n)=-6 n+100$ and $P^{\prime}(n)=0$ implies $n=\frac{50}{3}$. We have $P(0)=-600 ; P\left(\frac{50}{3}\right)=233 \frac{1}{3}$ and $P(25)=25$. Hence $n=\frac{50}{3}=16 \frac{2}{3}$ is the maximal point. However, the factory must produce discrete number of products, and hence, by the continuity of $P(n)$ the number of products which will produce the maximal profit is $n=16$ or $n=17$ or $n=25$. We have $P(16)=232$ and $P(17)=233$. Hence 17 products will give the maximal profit.
10) Denote by r the radius of the half circle, by a the length of the rectangle and by h the width of the rectangle. Thus, $a=2 r$ since the half circle is to be above the rectangle. The
surrounding of the window is given by $C=a+2 h+\frac{1}{2}(2 \pi r)=2 r+2 h+\pi r$. The area of the window is $S=a h+\frac{1}{2} \pi r^{2}=2 r h+\frac{1}{2} \pi r^{2}$. It is given that $C=p$. Hence $h=\frac{1}{2}(p-(2+\pi) r)$, and since $h \geq 0$ this implies that $r \leq \frac{p}{2+\pi}$. Substituting inside S, we view S as a function of r, and we have $S(r)=p r-\left(2+\frac{\pi}{2}\right) r^{2}$. Thus the problem is to find maximum value for $S(r)=p r-\left(2+\frac{\pi}{2}\right) r^{2}$ in the interval $\left(0, \frac{p}{2+\pi}\right)$. We have $S^{\prime}(r)=p-(4+\pi) r$ and when $S^{\prime}(r)=0$ we get $r=\frac{p}{4+\pi}$. Since $S^{\prime \prime}(r)=-(4+\pi)<0$, then $r=\frac{p}{4+\pi}$ is a local maximum, and thats the desired radius.
11) Denote by x the length of the square. Thus, the box obtained has base length $a-2 x$, width $b-2 x$ and height x. Hence its volume is given by $V(x)=x(a-2 x)(b-2 x)=$ $a b x-2(a+b) x^{2}+4 x^{3}$. We have $0<x<\frac{a}{2}$ and also $x<\frac{b}{2}$. Thus $0<x<\frac{1}{2} \min \{a, b\}$. We have $V^{\prime}=a b-4(a+b) x+12 x^{2}$. Hence solving the quadratic equation $a b-4(a+b) x+12 x^{2}=0$, $V^{\prime}(x)=0$ implies

$$
x_{1,2}=\frac{1}{6}\left[(a+b) \pm \sqrt{a^{2}-a b+b^{2}}\right]
$$

Since $a^{2}-a b+b^{2} \geq a^{2}-2 a b+b^{2}=(a-b)^{2} \geq 0$ it follows that $\sqrt{a^{2}-a b+b^{2}}$ is a real nonnegative number. Also, $a^{2}-a b+b^{2} \leq a^{2}+2 a b+b^{2}=(a+b)^{2}$, and hence $\sqrt{a^{2}-a b+b^{2}} \leq$ $a+b$. This means that the two solutions are nonnegative numbers, and hence the two solutions are possible extreme points. Checking the signs of $V^{\prime}(x)$ we get

Hence $x_{1}=\frac{1}{6}\left[(a+b)-\sqrt{a^{2}-a b+b^{2}}\right]$ is a local maximum. Finally, we need to check that $0<x_{1}<\frac{1}{2} \min \{a, b\}$. Assume for simplicity that $b \leq a$. From the above we deduce that $a^{2}-a b+b^{2} \geq(a-b)^{2}$ or $\sqrt{a^{2}-a b+b^{2}} \geq a-b$ where here we used the assumption that $b \leq a$. Hence $x_{1}=\frac{1}{6}\left[(a+b)-\sqrt{a^{2}-a b+b^{2}}\right] \leq \frac{1}{6}[(a+b)-(a-b)]=\frac{b}{3}<\frac{b}{2} \leq \frac{a}{2}$ where the last inequality follows from the assumption that $b \leq a$.
12) Assume that m is the slope of the line which passes through the point (1,2). Then clearly $m<0$, for otherwise there will be no triangular in the first quadrant. Hence the equation of the line is $y-2=m(x-1)$ or $y=m x+(2-m)$. Therefore the intersection points of this line with the axes are the points $(0,2-m)$ and $\left(\frac{m-2}{m}, 0\right)$. Hence, the area of the triangular is $S(m)=\frac{1}{2}(2-m)\left(\frac{m-2}{m}\right)=-\frac{(m-2)^{2}}{2 m}$. Hence $S^{\prime}(m)=-\frac{1}{2} \frac{2 m(m-2)-(m-2)^{2}}{m^{2}}=$ $-\frac{(m-2)(m+2)}{2 m^{2}}$. Hence $S^{\prime}(m)=0$ implies $m= \pm 2$. Since we are only interested in negative values of m, then we need only to consider $m=-2$. By checking the signs of the first derivative, we see that $S(m)$ decreases for $m<-2$ and increases when $m>-2$. Hence $m=-2$ is a local minimum, and thats the slope of the desired line. Thus, the equation of the line is $y=-2 x+4$ and its three vertices are in $(0,0) ;(0,2)$ and $(4,0)$.
13) Denote the two numbers by a and b. Thus $a b=36$. We want to minimize the term $a^{2}+b^{2}$. Clearly $a, b>0$. Plugging $b=\frac{36}{a}$ we obtain the function $f(a)=a^{2}+\frac{36^{2}}{a^{2}}$. We have $f^{\prime}(a)=2 a+\frac{36^{2} \cdot(-2)}{a^{3}}=\frac{2}{a^{3}}\left(a^{4}-36^{2}\right)$. Thus $f^{\prime}(a)=0$ implies $a^{4}-36^{2}=0$ or $a= \pm 6$. the relevant point is $a=6$. We have $f^{\prime \prime}(a)=2+\frac{6 \cdot 36^{2}}{a^{4}}>0$. Hence $a=6$ is a local minimum. Also, this is the only extreme point in the interval $(0, \infty)$, and hence the minimum is given when $a=b=6$.
14) We need to consider three cases. First, assume that $x \geq a$. For these values of x we have

$$
f(x)=\frac{1}{1+x}+\frac{1}{1+x-a}
$$

Differentiating, we get

$$
f^{\prime}(x)=-\frac{1}{(1+x)^{2}}-\frac{1}{(1+x-a)^{2}}
$$

which is clearly always negative. Hence the function decreases for all $x \geq a$, and hence obtains its maximal value at $x=a$. We have $f(a)=\frac{2+a}{1+a}$. Next, consider the domain $0<x<a$. In this domain,

$$
f(x)=\frac{1}{1+x}+\frac{1}{1-x+a}
$$

and hence

$$
f^{\prime}(x)=-\frac{1}{(1+x)^{2}}+\frac{1}{(1-x+a)^{2}}=\frac{(2+a)(a-2 x)}{(1+x)^{2}(1-x+a)^{2}}
$$

hence $f^{\prime}(x)=0$ implies $x=\frac{a}{2}$. We have $f\left(\frac{a}{2}\right)=\frac{4}{a+2}<\frac{2+a}{1+a}$ and hence $x=\frac{a}{2}$ is not a maximal value for the function. Finally, in the domain $x \leq 0$ we have

$$
f(x)=\frac{1}{1-x}+\frac{1}{1-x+a}
$$

and hence

$$
f^{\prime}(x)=\frac{1}{(1-x)^{2}}+\frac{1}{(1-x+a)^{2}}
$$

which is always positive. Hence $f(x)$ increases in this domain and hence the maximal value is obtained in $x=0$. Since $f(0)=\frac{2+a}{1+a}$, we proved that indeed $\frac{2+a}{1+a}$ is the maximal value that $f(x)$ obtains.

