
Calculus A for Economics

Solutions to Exercise Number 9b

4) e) The function is defined and differentiable for all x ∈ [1, e]. We have y′ = 1
x

and

f(1) = 0 and f(e) = 1. Hence x = 1 is a minimum point and x = e is a maximum point.

5) Denote h(x) = f(x)− g(x). Since f(x) and g(x) are differentiable in (a, b) then h(x)

is differentiable in (a, b) and since f(x) and g(x) are continuous in [a, b] so is h(x). Also,

since f(a) = g(a) then h(a) = 0. We have h′(x) = f ′(x) − g′(x), and since f ′(x) > g′(x)

for all x ∈ (a, b), it follows that h′(x) > 0 for all x ∈ (a, b). Given a point x ∈ (a, b) We

apply the Mean Value Theorem to the function h(x) on the interval [a, x]. ( Verify that

all the conditions of the Theorem are satisfied). Thus, there is a point c ∈ (a, x) such that

h(x) − h(a) = h′(c)(x − a). Clearly x − a > 0 and from the above h′(c) > 0. Hence, for

x ∈ (a, b) we have h(x) − h(a) > 0 or h(x) > h(a). But since h(a) = 0, we obtain for all

x ∈ (a, b) that h(x) = f(x)− g(x) > 0 which is what we needed to prove.

6) a) Denote f(x) = 2
√

x and g(x) = 3 − 1
x
. Then for x > 1 these function are defined

and differentiable. We have f ′(x) = 1√
x

and g′(x) = 1
x2 . For all x > 1 we have x2 >

√
x and

hence f ′(x) > g′(x) for all x > 1. Also, f(1) = g(1). Therefore we may apply problem 5) to

deduce the desire inequality.

b) Consider first the case when x > 0. Define f(x) = ex and g(x) = 1 + x. Then f ′(x) = ex

and g′(x) = 1. We have f(0) = g(0) = 1, and for all x > 0 we have ex > 1 or f ′(x) > g′(x).

Therefore we may apply problem 5) to deduce the desire inequality. When x < 0 we set

y = −x. Then we need to prove that e−y > 1 − y for all y > 0. Setting f(y) = e−y and

g(y) = 1− y and applying problem 5) the inequality follows. ( Check the conditions!)

c) Let f(x) = lnx and g(x) = 2(x−1)
x+1

. Both functions are defined and differentiable for

all x > 1. We have f(1) = g(1) = 0. Also, f ′(x) = 1
x

and g′(x) = 4
(x+1)2

. To check

that f ′(x) > g′(x) we need to prove that 1
x

> 4
(x+1)2

for all x > 1. This is equivalent to

(x + 1)2 > 4x which is equivalent to (x − 1)2 > 0 which is true for all x > 1. Therefore we

may apply problem 5) to deduce the desire inequality.

d) We argue by induction on n. For n = 0 we get 1 < ex which is true for all x > 0. Assume
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the inequality holds for n− 1. Thus we have

1 + x +
x2

2!
+ · · · xn−1

(n− 1)!
< ex (1)

Denote f(x) = ex and g(x) = 1 + x + x2

2!
+ · · · xn

n!
, and apply problem 5) to these functions.

Clearly f(0) = g(0) = 1. Also, f ′(x) = ex, and g′(x) is the left hand side of equation (1).

Hence, equation (1) is equivalent to f ′(x) > g′(x). Thus, we deduce that f(x) > g(x) which

is the inequality we needed to prove.

7) Denote the two numbers by a and b. Then, a + b = 40 or b = 40 − a and their

product is ab, or a(40 − a). Define the function f(a) = a(40 − a). Then we need to find

the maximum of f(a) when 0 ≤ a ≤ 40. The last condition follows from the fact that

outside this interval the function f(a) is negative and so the product cannot be maximal.

We have f ′(a) = 40 − 2a and f ′(a) = 0 implies a = 20 which is in our interval. We have

f(0) = f(40) = 0 and f(20) = 400. Hence the maximum is obtained if we take the numbers

a = b = 20.

8) Denote by a the length of the base of the box, and by b its width. Also denote by h the

height of the box. Hence, if we denote its volume by V then V = abh, and if we denote by S

the area of its faces then S = 2(ab+ah+bh). It is given that S = 200 and that a = 3b. From

these conditions we can write V as a function of b. Indeed, we have V (b) = 75b− 9
4
b3. The

equation S = 2(ab + ah + bh) becomes h = 200−6b2

8b
. Since h ≥ 0, we must have 200−6b2

8b
≥ 0,

or b ≤ 10√
3
. Clearly, b ≥ 0. Thus, we need to find the maximum of V (b) = 75b − 9

4
b3 in the

interval 0 ≤ b ≤ 10√
3
. We have V ′ = 75− 27

4
b2 and the only relevant point is b = 10

3
which is

in our interval. We have f(0) = f( 10√
3
) = 0 and f(10

3
) = 500

3
. Hence, b = 10

3
is the maximal

point. For this value we have a = 3b = 10, and h = 5.

9) Producing n products a week costs 600+10n+n2 Shekel. The amount the factory gets

from selling these products is (110− 2n)n Shekel. If we denote the profit by P , and view it

as function of n, then we have P (n) = (110− 2n)n− (600 + 10n + n2) = −3n2 + 100n− 600.

Clearly 0 ≤ n ≤ 25. We have P ′(n) = −6n + 100 and P ′(n) = 0 implies n = 50
3
. We

have P (0) = −600; P (50
3
) = 2331

3
and P (25) = 25. Hence n = 50

3
= 162

3
is the maximal

point. However, the factory must produce discrete number of products, and hence, by the

continuity of P (n) the number of products which will produce the maximal profit is n = 16

or n = 17 or n = 25. We have P (16) = 232 and P (17) = 233. Hence 17 products will give

the maximal profit.

10) Denote by r the radius of the half circle, by a the length of the rectangle and by h the

width of the rectangle. Thus, a = 2r since the half circle is to be above the rectangle. The
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surrounding of the window is given by C = a + 2h + 1
2
(2πr) = 2r + 2h + πr. The area of the

window is S = ah + 1
2
πr2 = 2rh + 1

2
πr2. It is given that C = p. Hence h = 1

2
(p− (2 + π)r),

and since h ≥ 0 this implies that r ≤ p
2+π

. Substituting inside S, we view S as a function

of r, and we have S(r) = pr − (2 + π
2
)r2. Thus the problem is to find maximum value for

S(r) = pr − (2 + π
2
)r2 in the interval (0, p

2+π
). We have S ′(r) = p − (4 + π)r and when

S ′(r) = 0 we get r = p
4+π

. Since S ′′(r) = −(4 + π) < 0, then r = p
4+π

is a local maximum,

and thats the desired radius.

11) Denote by x the length of the square. Thus,the box obtained has base length a−2x,

width b − 2x and height x. Hence its volume is given by V (x) = x(a − 2x)(b − 2x) =

abx− 2(a + b)x2 + 4x3. We have 0 < x < a
2

and also x < b
2
. Thus 0 < x < 1

2
min{a, b}. We

have V ′ = ab−4(a+b)x+12x2. Hence solving the quadratic equation ab−4(a+b)x+12x2 = 0,

V ′(x) = 0 implies

x1,2 =
1

6

[
(a + b)±

√
a2 − ab + b2

]

Since a2 − ab + b2 ≥ a2 − 2ab + b2 = (a − b)2 ≥ 0 it follows that
√

a2 − ab + b2 is a real

nonnegative number. Also, a2−ab+b2 ≤ a2 +2ab+b2 = (a+b)2, and hence
√

a2 − ab + b2 ≤
a + b. This means that the two solutions are nonnegative numbers, and hence the two

solutions are possible extreme points. Checking the signs of V ′(x) we get

V

V ′
↑
+ x1

↓
− x2

↑
+

Hence x1 = 1
6

[
(a + b)−√a2 − ab + b2

]
is a local maximum. Finally, we need to check that

0 < x1 < 1
2
min{a, b}. Assume for simplicity that b ≤ a. From the above we deduce that

a2 − ab + b2 ≥ (a − b)2 or
√

a2 − ab + b2 ≥ a − b where here we used the assumption that

b ≤ a. Hence x1 = 1
6

[
(a + b)−√a2 − ab + b2

] ≤ 1
6
[(a + b)− (a− b)] = b

3
< b

2
≤ a

2
where

the last inequality follows from the assumption that b ≤ a.

12) Assume that m is the slope of the line which passes through the point (1, 2). Then

clearly m < 0, for otherwise there will be no triangular in the first quadrant. Hence the

equation of the line is y − 2 = m(x − 1) or y = mx + (2 −m). Therefore the intersection

points of this line with the axes are the points (0, 2 −m) and (m−2
m

, 0). Hence, the area of

the triangular is S(m) = 1
2
(2 −m)

(
m−2

m

)
= − (m−2)2

2m
. Hence S ′(m) = −1

2
2m(m−2)−(m−2)2

m2 =

− (m−2)(m+2)
2m2 . Hence S ′(m) = 0 implies m = ±2. Since we are only interested in negative

values of m, then we need only to consider m = −2. By checking the signs of the first

derivative, we see that S(m) decreases for m < −2 and increases when m > −2. Hence

m = −2 is a local minimum, and thats the slope of the desired line. Thus, the equation of

the line is y = −2x + 4 and its three vertices are in (0, 0); (0, 2) and (4, 0).
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13) Denote the two numbers by a and b. Thus ab = 36. We want to minimize the term

a2 + b2. Clearly a, b > 0. Plugging b = 36
a

we obtain the function f(a) = a2 + 362

a2 . We have

f ′(a) = 2a + 362·(−2)
a3 = 2

a3 (a
4 − 362). Thus f ′(a) = 0 implies a4 − 362 = 0 or a = ±6. the

relevant point is a = 6. We have f ′′(a) = 2 + 6·362

a4 > 0. Hence a = 6 is a local minimum.

Also, this is the only extreme point in the interval (0,∞), and hence the minimum is given

when a = b = 6.

14) We need to consider three cases. First, assume that x ≥ a. For these values of x we

have

f(x) =
1

1 + x
+

1

1 + x− a

Differentiating, we get

f ′(x) = − 1

(1 + x)2
− 1

(1 + x− a)2

which is clearly always negative. Hence the function decreases for all x ≥ a, and hence

obtains its maximal value at x = a. We have f(a) = 2+a
1+a

. Next, consider the domain

0 < x < a. In this domain,

f(x) =
1

1 + x
+

1

1− x + a

and hence

f ′(x) = − 1

(1 + x)2
+

1

(1− x + a)2
=

(2 + a)(a− 2x)

(1 + x)2(1− x + a)2

hence f ′(x) = 0 implies x = a
2
. We have f(a

2
) = 4

a+2
< 2+a

1+a
and hence x = a

2
is not a maximal

value for the function. Finally, in the domain x ≤ 0 we have

f(x) =
1

1− x
+

1

1− x + a

and hence

f ′(x) =
1

(1− x)2
+

1

(1− x + a)2

which is always positive. Hence f(x) increases in this domain and hence the maximal value

is obtained in x = 0. Since f(0) = 2+a
1+a

, we proved that indeed 2+a
1+a

is the maximal value that

f(x) obtains.
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